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ABSTRACT the expectation-maximization (EM) algorithm [2]. The EM

It is well known that the expectation-maximization (EM) algorithm, @lgorithmis an iterative procedure that recomputes the model
commonly used to estimate hidden Markov model (HMM) parame-parameters given their current estimates so as to increase the
ters for speech recogion, is sensitive to the initial model parameter likelihood of the training data aach iteration. This algo-
values, making appropriate parameter initialization important. Werithm is sensitive to the values of the initial parameters, and
investigate the use of iterative Gaussian splitting and EM training tqyuarantees only a locally optimal solution. Different systems
initialize the desired number of Gaussians per HMM state (or statg;se different approaches to initialize and train the model pa-
cluster). We then study merging of Gaussians which contain ”merameters. However, to the author’s knowledge, there has been

training data as an approach to robust parameter estimation. Finalp{o clear comparative description in the literature of the effect
Gaussian merging and splitting is combined to form the Gaussian

Merging-Splitting (GMS) algorithm. Detailed experimental studies of d'ﬁe'fef”t Inltl?“zatlon and trimmg prolce.dur'es c;reelph f
show that Gaussian splitting gives similar performance to our pre[ecognltlon performance. Such a description is of value for

vious training algorithm, even though the two algorithms give very@nyone training an HMM based epch reognition system.
different parameter values. The robust parameter estimation frondVe believe the studies reported in this paper provide useful
Gaussian merging results in better performance than our old algdnsight into the issue of HMM parameter initialization and
rithm for speaker-independent models that have a large number dfaining.
parameters relative to the amount of training data. Iritemtd in one
experiment, speaker adaptation gave a 7% relative improvement i) this paper, we present the Gaussian Merging-Splitting
word error rate over the SI models when the S| models were traineGMS) algorithm for HMM training. In this method, iter-
with Gaussian splitting alone, as compared to a 15.5% improvemerdtive Gaussian splitting and EM training is used to initialize
when the SI models were trained with both splitting and mergingthe required number of Gaussians in each HMM state cluster.
even though the unadapted S| models gave similar performance. F‘Starting with a single Gaussian, Gaussian splitting is used to
nally, experiments with the GMS algorithm show that, for a givencrease the number of Gaussians at each stage of training
number of Gaussian parameters, better performance is achieved til the required number of Gaussians is reached. In addi-
reducing the number of HMM state clusters and increasing the NUME - h ateach stage, Gaussians are iteratively merged until each
ber of Gaussians per state cluster. T - .
Gaussian has a minimum amount of training data. The GMS
. algorithm results in a variable number of Gaussians in each
1. Introduction HMM state cluster. The number of Gaussians is automati-
Most conventional automatic speechaguaition (ASR) sys-  cally decided subject to a constraint on the maximum number
tems are based on context-dependent (CD) phone-based hig-each state cluster. Detailed experimental results show the
den Markov models (HMMs) that use Gaussian mixture modeffect of Gaussian splitting and merging, and compare the
els (GMMs) for the state-conditioned observation densitiesperformance with our previous training algorithm.
A commonly used CD unit is the triphone, which is a model
gf a phone in the gontext o'f left and' r|'ght phon'es. The num- 2. SRI's Previous Training Approach
er of observed triphones in the training data is usually very
large, with many triphones having very little training data, SRI's DECIPHER'™ speech reagnition system is based on
resulting in poor estimates of the model parameters. One s¢4MM state clustering where the states in each cluster share
lution to this problem is to use HMM state clustering wherethe same set of Gaussians or Genone [1]. Each state in a
the states in a cluster share a set of parameters, such as a@ister has a different mixture weight distribution to these
of Gaussians [1]. shared Gaussians. The HMM states are clustered separately
for eachphone. This is done by first training a phonetically
The HMM parameters are usually computed by maximum+jed mixture (PTM) system, where all states in a phone share
likelihood (ML) estimation using  the same set of 100 Gaussians. The states in this phone are

*This work was sponsored by DARPA through the Naval Command ancﬁhen Cll_JStered us_ing bOttom'Up agglomerative'clus'tering. For
Control Ocean Suniltance Centeunder contract N66001-94-C-6048. clustering, the distance between two states is given by the




weighted-by-countsincrease in entropy of the mixture weighessy; , 02, it; », ande?,. Then
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distribution (to the shared 100 Gaussians) due to merging the Hi1 = M;+exs Q)
two states [1]. The mixture weight distribution of the merged Wiy = i —cxs )
state is easily computed as the weighted-by-counts average of 5 5 5

the individual distributions. Ti1=0iz2 = i (3)

The Gaussians in each state cluster argaiized using the Wheres is a vector whoseith component is the standard
corresponding 100 PTM Gaussians. The 100 Gaussians figviation of thekth dimension of the original Gaussiaf),
eachphone are used to initialize the required numbegtigh ~ @nde is a small positive number. We setto 0.001 in our
state cluster through a series of steps involving the selectiof<Perments.

of the most likely Gaussians for each state cluster, and als,

Gaussian merging. Details of the algorithm can be fouan
in [1].

ach state in a state cluster has a separate mixture weight dis-
ribution to the Gaussians in that Genone, resulting in a Gaus-
sian mixture model for the state given by w! N (.; p;, o?).

: L . . g
This approach poses a potential problem for the initial val-"/Nen we split Gaussiaf the mixture weightv; of stateq

ues of the Gaussians in the state clusters and hence the firf@l Gaussian is divided equally into the mixture weights for
models. The 100 PTM Gaussians cover the entire acousti®'€ resulting Gaussians.

space for a particular phone. Each state clus'ter for this phonﬁ1e Gaussian splitting initialization approach can be config-
covers only a small part of this large aclzoustlclspgcc.a.. ThuSyred in a variety of ways. For example, we may split all
the PTM Gaussians may not be appropriate for initializing thes 5 \ssians at each stage, or may split only the single largest

Gaussians in the individual state clusters, and may result anriance Gaussian, or may do something in between these
inefficient use of the parameters. To address this issue, w ’

studied an initialization algorithm based on Gaussian splitting.

_ - 4. Gaussian Merging
3. Gaussian Splitting If there is too little training data segmented into an HMM state

We implemented a new initialization scheme based on th&lUuster, then the Gaussians in the corresponding Genone will
splitting strategy commonly used in vector quantization [3]_not be well esﬂmaf[ed. To ensure ropust Gausglan estimation,
In this approach, we first estimate a single Gaussian modd¥® useéd a Gaussian merging algorithm. In this method, the
for each Gaone. Given the segmentation of data into HMM Gaussians in a Genone are iteratively merged using bottom-
states, the ML estimate of these (single) Gaussians is global agglomerative clustering until al! Gaussians havg atleast a
optimal. We then split the Gaussian for eachnGee into  { re;hold amount of data. The optimum \{alue of thls thresh-
two by slightly perturbing the mean of the Gaussian along thé"d is experlmentally determlngd. Gaussian merglng.results
direction of the standard deviation vector, and reestimate thi an automatically selected variable number of Gaussians per
model by further EM training. This process of splitting and G&none. The clustering distance we used between two Gaus-
retraining is repeated until the required number of Gaussians f@nsV1 and Nz, is given by the weighted-by-countsincrease
achieved. At each stage, we cdroose how many Gaussians N entropy due to merging the Gaussians:

to split. Thus, if there are currenttyGaussians that we want (T1 + T») T T
to increase ten Gaussians, then we splitthe—n Gaussians  D(1,2) = — log|C12| — > log|C1| — > log|C5|,
having the largest average variance. This average, computed (4)

by using the geometric mean, is a measure of the likelihoogyhere7; and 7, are speech dataants, and (4|, |C;| and

of the training data modeled by that single Gaussian. Thec:, ,| are the determinants of the covariance matrices for the
Gaussian with the largest variance is the one for which thendividual Gaussians, and the merged Gaussian, respectively.

training data likelihood is minimum.  Since our goal is to ¢ , can easily be computed from the sufficient statistics of
maximize the training data likelihood, splitting this Gaussianthe individual Gaussians.

is intuitively appealing. Gaussian splitting is also used in
the Cambridge University HTK system [4]. However, in that Th M ;
system, the Gaussian with the largest amount of data is split S & GMS Algorithm

as opposed to the one with the largest variance. We do ndf the GMS algorithm, Gaussian merging is done beézren
believe that this difference will significantly affect the final Gaussian splittingoperation. This guarantees that at all stages
recognition results. of the algorithm, the Gaussians are robustly estimated for all

Genones. In the GMS algorithm, the user must specify the
Let the mean and variance of Gaussiaim a Genone be number of Genones and the maximum number of Gaussians
denoted ag:; and o2, respectively. Let the parameters for per Genone. The GMS algorithm iteratively increases the
the Gaussians resulting from splitting Gaussidre denoted number of Gaussians using merging and splitting until the



maximum number of Gaussians is reached. Since threiatn  ith Gaussian of some Genone, aNd= > n; be the total
of training data per Genone varies, and Gaussians are mergadmber of feature vectors for that Genone. The entropy of
until all Gaussians have a threshold of data, the number dhe distributiorp; = n;/N gives an estimate of how the data
Gaussians per Genone usually varies with the Genones afteiisadistributed into the Gaussians. The entropy is computed as
certain number of merging and splitting operations. Genones
with lesser training data have fewer Gaussians and vice versa.
The number of Gaussians that are split thus varies with the M
Genones as the algorithm progresses. H=— Zpi logp;, (5)

i=1

6. Experimental Results

6.1. Data Description where M is the number of Gaussians in the Genone. The

We conducted detailed experiments using the Wall Street Joumaximum value of this entropy is log, and it is achieved
nal (WSJ) corpus to study the effect of Gaussian splitting anavhen the data is equally distributed into the Gaussians.

merging, comparing performance with our previous trainingWe trained a Genone-based HMM using the old initializa-

algorithm. For training, we used the WSJ SI-284 corpus,. i . o
Wﬁich consists of 1429male and 142 female speakers,pwitHOn approach (Section 2) and the Gaussian splitting approach

about 18,000 utterances per gender. For our experiments, v@ec’uon 3). These models had 991 HMM state clusters, with

used half of the male speakers and 49 utterances per speal?@’Ch cluster sharing a Gene with 32 Gaussians. Thus, the

for a training set of 3479 utterances. Since we ran humero Ia.X|mdum er}troply f?r: ezch (Egne |s|$t'(log32). Ash ex-n b
training experiments in this study, we used this smaller trainP'aNed previously, the LSaussian spiitling approach can be

ing set to reduce the time for each experiment. However, wi onfiggred ina variety of ways. For exgmple, wemay splitall
believe the results will extend to larger training sets. aussians at egch stage, or may split qnly 'the single largest
variance Gaussian, or may do something in between these
For recognition experiments, we used three test sets. Thextremes. We experimented with many of these approaches.
first consists of 10 male speakers taken from the 1993 WSJhere was not a very significant difference in performance
development and evaluation test sets, each uttebingts3  between these methods, and so we decided on a simple strat-
sentences for a total of 230 sentences and 3645 words. Th@gy that splits all Gaussians @ach stage until we have the
set is referred to subsequently as WSJ93. A 20,000-worglesired number of Gaussians per Genone.
bigram language model was used for this set. The seco
test set was the 10-speaker male subset of the 1994 WSJ
development test set and used a 5000-word bigram langua
model. This set consisted of 209 sentences with 3330 words,” .~ L .
and is referred to as WSJ94S0. The third test set was the map litting approach. The-axis is the Genone index, and the

subset of the 1995 North American Business News H3-c(?€Nones aré ordered from left to right on the @dsording

(Sennheiser microphone) development set and used a 60,00t8-an increasing amount of data per Genone. As we can see

word bigram language model. This set had 152 sentences Wi{hom the figures, the entropy for many Genones is much less

3904 words, and is referred to as NABN95. All recognition han thGe maX|mutr: Oés n the old apprgacr:.,lishgw::g that fotrh
experiments were run using word lattices [5] that we ha ese benones, the Laussians are underutiiized. However, the

previously generated for these test sets. entropy for all Genones trained using thg splitting approach is
very closeto 5. Clearly, the two initialization approaches have
The Speech features we used were ]_2.f][m1uency Cepstra| dramatically different influences on the model parameters.
coefficients (MFCCs) together with their first- and second- ) . . -
order time derivatives, and the normalized energy along witﬂzrom the figures, it appears that the Gaussian splitting ap-

its first- and second-order derivatives to give a 39-dimension roach does a petter JOb. of unhzmg the model parameters.
speech feature vector. We ran recognition experiments using the old model and the

one trained with Gaussian splitting. Table 1 shows the word
error rates on the three test sets. As can be seen, Gaussian
splitting gave essentially the same performance as the old ap-
To estimate how well the Gaussians in a Genone model thproach. One possible problem with Gaussian splitting is that
training data, we can measure the number of feature vectoi§there are not enough data points in a Genone, #wsgh

in each Gaussian. If some Gaussians model most of th&aussian may wind up getting only a small amount of data,
data, and the others only a few data points, it might be arsince the data is equally distributed into the Gaussians. The
indication of inefficient parameter usage caused by poor initiaGaussian merging algorithm described in Section 4 should
conditions. Let:; denote the number of feature vectors in thetake care of this by merging Gaussians with too little data.

nd. . .
g{gurelplotstheentropyforeachmmemthe HMM trained

th our old initialization algorithm (see Section 2), and the
olid line in Figure 2 plots the entropies for the Gaussian

6.2. Effect of Gaussian Splitting
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Word Error Rate (%)
Oold Gaussian splitting followed
by merging
Database | Algorithm || Merging Threshold Valueg
0 [25 |50 |100

WSJ93 23.7 24.0| 23.9| 23.5| 23.9
WSJ94S0|| 13.7 13.9| 13.5| 135 13.8
NABN95 || 24.3 235| 23.9| 239 23.9

Table 2: Comparison of word error rates with different merg-
ing thresholds

6.3. Effect of Gaussian Merging

We merged the 32 Gaussians in each of the 99fhoBGes
trained using the Gaussian splitting algorithm. This merging
was followed by one iteration of EM training to reestimate
the models, starting with the merged Gaussians. The dotted

Figure 1: Entropy for Genones with the old training algorithmline in Figure 2 plots the entropy for the resulting Genones,
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showing that Genones with less data use fewer Gaussians
while Genones with enough data use close to the maximum
of 32 Gaussians. Table 2 shows the word error rates of the
new training approach with different merging thresholds. It
also replicates the word error rates obtained by using the old
training approach.

From these results, we see that the merging algorithm resulted
in a small improvement for WSJ93 and WSJ94S0. At a
merging threshold of 50, the performance of the new algorithm
is essentially the same as that of the old algorithm. Again,
we see that no significant improvement in performance was
achieved.

We investigated how speaker-independent (SI) models trained
using the splitting and merging algorithms performed when
they were adapted to the test speakers using maximum-
likelihood transformation based adaptation where we used
block-diagonal matrix affine transformations of the HMM
mean vectors [6]. These experiments were carried out only
on the WSJ93 set. Adaptation was done in supervised mode
with the 40 common sentences provided by each speaker. Ta-

Figure 2: Entropy for Genones with the Gaussian splittingy|e 3 gives the word error rates for both the unadapted and

algorithm

Database

Word Error Rate (%)

Old Algorithm | Gaussian Splitting

WSJ93

23.7

24.0

WSJ94S0

13.7

13.9

NABN95

24.3

23.5

adapted models. We can see clearly that Gaussian merging is
critical to good adaptation performance. It is interesting that
while the difference in the performance of the unadapted mod-
els is small, training the SI models by Gaussian splitting and
merging resulted in a 15% adaptation improvement over the Sl
models as compared to only 7% when Gaussian splittingalone
was used to train the SI models. This result can be explained
by the greater robustness of the SI model parameter estimates
from Gaussian merging as compared to splitting alone. Since
the Sl models are used to estimate the transformations used

Table 1: Word error rates for different initialization algorithms in adapta‘[ion, poor S| model estimates cause incorrect adap-

tation transformation estimates, which in turn result in poorly



Training method for SI models Training method for SI modelg
Number of Genones = 991 Number of Genones = 2027
Models Old || Gaussian| Splitting Models Old Splitting
Splitting | and Merging and Merging
Speaker- 23.7|| 24.0 235 Speaker- | 25.3 23.9
independent independent
Adapted 205 22.3 19.9 Adapted || 21.1 20.3

Table 3: Comparison of word error rates for WSJ93 beforeTable 5: Comparison of word error rates for WSJ93 before
and after adaptation using different approaches to train the $ind after adaptation using different approaches to train the Sl
models models

estimated adapted models. However, while Gaussian mergir@jeater robustness is reflected in the fact that the word error

gave better performance than splitting alone, itis only slightlyrates are not as sensitive to the number of model parameters,

better than the old algorithm. creating awider range of the number of model parameters that
give similar error rates. This makes it easier to experimentally

Table 3 clearly shows the effect of greater robustness due tearch the space of models to find the optimal one.

Gaussian merging. We further investigated this by comparing

the Gaussian splitting and merging algorithm to the old apFinally, in Table 5, we present adaptation results on WSJ93

proach described in Section 2. Since the greater robustnessf®r the 2027 Genone system when the S| models were trained

Gaussian merging would be more evident in much larger syswith the old algorithm and the splitting and merging algo-

tems, we trained an HMM system with 2027 Genones and 32ithm. The results show that the performance both before and

Gaussians per Genone, using both the old training approadifter adaptation was superior with the splitting and merging

and the new approach (Gaussian splitting ugaith Gaone  algorithm.

has 32 Gaussians, followed by iterative Gaussian merging

with a merging threshold of 50 frames). Table 4 shows the 7. Training with the GMS Algorithm

word error rates for this system, along with the correspondin

word error rates for the smaller, 991-Genone system. %\fter studying the individual effects of Gaussian splitting and

merging, we used the GMS algorithmto train Genonic HMMs
From this table, we see that for both the Gaussian splittindgpy using the WSJ SI-284 subset described above. We experi-
and merging and old training algorithms, the word error ratemented with different numbers of Genones and Gaussians per
was higher with the larger system (2027 Genones). Howevefenone. Table 6 gives the resulting recognition word error
the system trained with the splitting and merging algorithmrates. Since the GMS algorithm guarantees robust parameter
degraded more gracefully than the one trained with the oldstimation, we experimented with large numbers of Gaussians
algorithm. The relative increase in word error rate for the oldper Genone. In previous development work, we had typically
system on WSJ93, WSJ94S0, and NABN95 was 6.8%, 13.1%jsed 32 Gaussians per Genone. However, in using the GMS
and 7.0%, respectively, as compared to 1.7%, 4.3%, and 5%)gorithm we decided to increase this upto 512 Gaussians
respectively, for the new algorithm. Thus, the Gaussian splitper Genone. (To allow comparison across different settings
ting and merging training algorithm gives more robust esti-with the same total number of Gaussian parameters, the total
mates of the model parameters than the old algorithm. Thisumber of Gaussians is given in the table in parentheses.)

One interesting observation we can make from Table 6 is that
the optimal system has 126 Genones and 512 Gaussians per
Genone. This is significantly different from our previous sys-
tems, which typically used 1000 or more Genones and 32
Gaussians per Genone. We note, however, that we used only
a fraction of the WSJ SI-284 data to train the systems listed
in Table 6, and so the optimal number of parameters may be

Word Error Rate (%)
Old algorithm Gaussian Splitting and
Merging Algorithm
Database || 991 2027 991 2027
Genones| Genones|| Genones| Genones

WSJ93 23.7 25.3 23.5 23.9 different from that of our previous systems. However, the
WSJ94S0] 13.7 15.5 13.5 14.1 table still shows a preference for systems with fewer Genones
NABNOS || 24.3 26.0 23.9 251 and more Gaussians per Genone. For example, comparing the

_ ~ 991-Genone/32-Gaussian system with the 126-Genone/256-
Table 4: Comparison of word error rates for systems withGaussian system, we see that the latter has a lower word
different numbers of parameters error rate even though the number of parameters is compara-



Number of Number of Gaussians per Genone
Genones/ 32 128 256 512
Test Set
126/ (16128)| (32256)| (64512)

WSJ93 - 23.7 23.0 23.0
WSJ94S0 - 12.9 12.3 11.7
NABN95 - 225 21.8 22.0

252/ (32256) | (64512)

WSJ93 - 22.8 225 -
WSJ94S0 - 13.2 12.5 -
NABN95 - 22.6 22.7 -

510/ (16320)

WSJ93 234 - - -
WSJ94S0|| 13.3 - - -
NABN95 23.8 - - -

991/ (31712)

WSJ93 23.8 - - -
WSJ94S0|| 13.2 - - -
NABN95 23.8 - - -

Table 6: Word error rates (%) with different number of
Genones and Gaussians per Genone. The number of Ga

sians is in parenthesis.

be computed. By effectively using shortlists, we believe that
a significant speedup can be achieved using the new models
trained by the GMS algorithm. We are currently studying this
issue.

8. Summary and Conclusion

We have introduced the GMS algorithm for HMM training
and presented a detailed comparative study of the algorithm.
Gaussian splitting has the property of uniformly distributing
the data into the available Gaussians, while Gaussian merging
results in robust parameter estimation. This robustness was
shown by graceful degradation in performance when the num-
ber of parameters is larger than can be properly estimated by
the available training data, and also by significantly improved
performance of speaker adaptation algorithms. The GMS al-
gorithm allows us to efficiently train HMMs by automatically
determining the number of Gaussians for a given number of
Genones. Since robust estimation is guaranteed, we can train
systems with a very large number of Gaussians per Genone.
Some interesting observations were made about the effect of
varying the number of state clusters or Genones and the num-
ber of Gaussians per Genone. As a result, we found that the

us-

optimum HMM structure was very different from that used by
our previous systems; the number of state clusters or Genones
was significantly decreased while the number of Gaussians
per Genone was significantly increased. The reduced number

ble. In fact, the 126-Genone/128-Gaussian system also has Genones has the potential of giving a significant speedup

a lower error rate than the 991-Genone/32-Gaussian syste@iring recognition.

even though it has fewer parameters. One explanation for
this might be that when two HMM state clusters overlap in
acoustic space, modeling them as a single cluster with more;
Gaussians gives better resolution than modeling them as two
clusters with half the number of Gaussians in each cluster.

Since the optimal models trained with the GMS algorithm 5.
have fewer Genones than our previous systems, there is the
potential of a speedup for speechaguition in addition to

the improved word error rate. At any frame during the Viterbi 3.
search, multiple hypotheses must be evaluated. dagh
hypothesis, the frame likelihoods of the Gaussians in the cor-
responding Genone are computed arsthed. When the 4
same Genone is used by another active hypothesis at the same
frame, the cache is used to provide the likelbds. For sys-
tems with fewer Genones, the same Genone is used for moré’
of the active hypotheses at any frame, thus reducing the num-
ber of Genone likelihood computations. However, since the
number of Gaussians per Genone is largach Geone like-
lihood computation is more expensive. We can reduce the6.
cost of Genone likelihood computations by using Gaussian
shortlists [1]. In this method, vector quantization is used to
divide the acoustic space into Voronoi regions. A shortlist
of Gaussians is maintained for eachn®ee ineach region.
During recognition, the Voronoi region corresponding to the
test frame is used to determine the shortlist of Gaussians to
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